

TPF Coronagraph Integrated Modeling Results

Scott Basinger, Andrew Kissil, William Ledeboer

Jet Propulsion Laboratory, California Institute of Technology Pasadena, CA 91109

Introduction

Terrestrial Planet Finder Mission

TPF

Quick look at models

- Structural (Finite Element Model)
- Optical
- Jitter analysis: Structural and optical response due to Reaction Wheel Assembly (RWA) perturbations
 - Rigid body effects
 - Primary mirror distortions
- Steady state thermal effects due to 180 degree roll of spacecraft
 - Primary mirror temperatures and distortions
 - Optical wavefront

Structural Finite Element Model

Model Plots of Primary & Secondary Sub-Assemblies

Terrestrial Planet Finder Mission

TPF.

Structural Model Summary

Components and Assumptions

- 6 x 3.5 m Primary Mirror
 - ULE Glass (E= 68 Gpa, rho= 2200 kg/m³, CTE= .03 ppm/K)
- 10 m Long Secondary Support Tower
- 1 Hz Passive Isolation between Payload & Spacecraft
 - Input for Reaction Wheel Jitter Assumes 2nd Level of Isolation at RW Assembly Mount (.1N, .01Nm)
- 0.5% Uniform Passive Damping Assumed (Conservative)
 - Will Look at Increased Damping for Critical Modes
- 6 V-groove Layer Sunshield (2 mil Kapton)
 - 3 psi membrane tension preload (geom stiff modeled with equiv shear props)
- Solar Array (4 Panels)
- Solar Sail (2 mil Kapton, 17 x 3.3 m, sized by Doug Lisman for 48 Hr between RW offloads)
 - 6 psi membrane tension preload (geom stiff modeled with equiv shear props)
- Predominant Material = Quasi-Iso M55J GrEp (E= 110 GPa, rho= 1633 kg/m³, CTE= -.18 ppm/K)

Model Statistics

- System Dynamic Model: 1397 Nodes (~8,380 dofs), & 1888 Elements
- Primary Mirror Mid-Fidelity Model (for thermal def): 2100 Nodes (~12,600 dofs), & 4600
 Elements
 - 2 Layers of Plate Elements for Front/Back Facesheets & Orthotropic Solids for Core
- Total Deployed Mass = 3,260 kg (cg= 0.86 m forward of RW Location)
 - 650 kg Primary Mirror, 250 kg Secondary Support Tower, 15 kg Secondary, 550 kg AMS

Frequency vs Modes of Model

TPF

Vibration Mode Analysis Results

- Highest rigid body mode is 1.7 x 10⁻⁵ Hz (indicates good rigid body behavior- i.e. no grounding)
- Lowest system elastic mode is at 0.126 Hz (due to solar sail)
- Lowest sunshield mode is at 0.25 Hz
- Lowest solar array mode is at 1.1 Hz
- Lowest secondary tower mode is at 21 Hz

Terrestrial Planet Finder Mission

First Secondary Mirror **Tower Bending/Torsion** Mode (21 Hz)

Optical Model Layout

Terrestrial Planet Finder Mission

TPF

A NASA Origins Mission

6m x 3.5m Telescope

Optical Bench (coronagraph)

Optical Model Summary

Terrestrial Planet Finder Mission

TPF

- For the *integrated* modeling results (only), ray tracing is used
- Tilt is removed from wavefront
- Wavefront is computed at the "exit pupil" of the occulting spot
- Sensitivity matrices were generated by perturbing each degree of freedom individually
 - 6 dof rigid body of each optic
 - primary mirror distortions

Jitter analysis

(Reaction Wheel Assembly perturbation effects)

Jitter Analysis

Terrestrial Planet Finder Mission

TPF

Jitter Analysis

Terrestrial Planet Finder Mission

TPF

A NASA Origins Mission

M1-M2 Despace Frequency Response to Simplified RW Jitter

Jitter Analysis

Terrestrial Planet Finder Mission

TPF

A NASA Origins Mission

M1-M2 Decenter Frequency Response to Simplified RW Jitter

Optical response to Jitter

TPF

RW Jitter Analysis Results Summary

Terrestrial Planet Finder Mission

TPF

A NASA

Origins

Mission

Two Types of SC/Telescope Isolation considered: 1Hz Passive & Active*

Rigid Body Optic Response (Model v2c)

	RMS WFE1	RMS WFE2		
Description	Passive Damp	Acive Damp	Req	WFE2/Req
M1-M2 Despace (nm)	1.0	0.01	2	0.006
M1-M2 Decenter (nm)	22.9	0.29	8	0.036
M2 Rotation (nrad)	2.8	0.04	5	0.007

Primary Mirror Distortion Response (picometers, Model v2c)

		RMS WFE1	RMS WFE2			
Zernike	Descr	Passive Damp	Active Damp	Req	WFE2/Req	
4	Power	194	2.43	5	0.5	
5	1st Ast 45	47	0.59	10	0.1	
6	1st Ast X	313	3.91	5	0.8	
7	1st Coma Y	11	0.14	10	0.0	
8	1st Coma X	6	0.08	1	0.1	
9	1st Tref Y	31	0.39	5	0.1	
10	1st Tref X	10	0.13	3	0.0	
11	1st Sper	18	0.23	1	0.2	
12	2nd Ast X	25	0.31	1	0.3	
13	2nd Ast 45	5	0.06	1	0.1	
14	1st Tetr X	21	0.26	1	0.3	
15	1st Tetr Y	5	0.06	3	0.0	

^{*} Note: Active Isolation results are estimated using scale factors based on LMCO test results for reduced systems. Elliptical Zernikes were used for fitting, WFEs are RMS values.

Steady state thermal effects

180 degree roll of spacecraft

TPF

Thermal Model

Terrestrial Planet Finder Mission

TPF

Steady State Thermal Analysis of Sunshield and Primary Mirror

Contour: Temp Load Set 1

Thermal Analysis of 180 degree roll

using steady-state temperatures

20001 y

Pre-Roll
Steady-StateTemps
for Beta= 90 deg and
Sun at -Y Position

Steady-State Delta Temps for 180 deg Roll from -Y to +Y Orientation (~+- 0.2 mK Change)

Notes: Thermal model used includes mid-fidelity primary mirror (smeared core props) and 6 v-groove layer sunshield. Secondary mirror & support struc not included.

15 Oct 2003 S. Basinger - 20

-0.000214

Structural response of 180 degree roll using steady-state temperatures

Breakdown of FEM Displacements into Zernike Components (see Notes below)

Zernike	Descr	WFE	Req	WFE/Req
4	Power	22.80	5	4.6
5	1st Ast 45	0.35	10	0.0
6	1st Ast X	13.00	5	2.6
7	1st Coma Y	2.54	10	0.3
8	1st Coma X	0.52	1	0.5
9	1st Tref Y	6.20	5	1.2
10	1st Tref X	0.28	3	0.1
11	1st Sper	0.17	1	0.2
12	2nd Ast X	0.55	1	0.6
13	2nd Ast 45	0.04	1	0.0
14	1st Tetr X	0.41	1	0.4
15	1st Tetr Y	0.17	3	0.1

FEM Displacements Highly Magnified and Z-disp Contours for Steady-State Delta Temps (Beta= 90 deg, ~Surface RMS WFE = 25.6 pm)

A NASA Origins Mission Notes: Tabulated Zernike WFEs are RMS values computed using elliptical Zernike functions, and PM displacements times 2 (rather than from the propagated sensitivity results)

Optical response of 180 degree roll using steady-state temperatures

Terrestrial Planet Finder Mission

TPF

A NASA Origins Mission

OPD Map from PM Sensitivity Matrix for Response to 180 deg Roll (Beta=90) Using Steady-State Temperatures

Final thoughts

Terrestrial Planet Finder Mission

TPF

- Results are preliminary--we've spent a lot of time carefully building up and verifying our modeling capabilities, but not much time with the TPF design yet.
- We have the capability of performing full near-field diffraction analysis to better analyze the wavefront at the coronagraphic mask and the overall contrast ratio at the detector.
- We will soon have the capability of quickly estimating contrast (for a particular coronagraph design, i.e. mask and Lyot stop) versus structural deformations, rather than looking only at wavefront. This will speed up structural and thermal optimizations.